
NASA TECHNICAL MEMORANDUM 107661 _'_//

Automatic Differentiation as a Tool in
Engineering Design

Jean-Francois
Laura E. Hall

Barthelemy I
P,j
(7,
Z

ul

M

U
C

_0
_0
_0

p._

0

_0

August 1992

NASA
National Aeronautics and

Space Administration

Langley Reseamh Center

Hampton, Virginia 23665

,-,4
Z_
I-4

A

I-- _j ,,¢

u_Z

"-, _,,'-_Z
_DI.u

P'-k-

I-.- W _

"_uJZ

•_, z'_ t/,j

AUTOMATIC DIFFERENTIATION AS A TOOL IN ENGINEERING DESIGN

Jean-Francois M. Barthelemyl NASA/Langley Research Center

Laura E. Hall, Unisys Corporation

Abstract

Automatic Differentiation (AD) is a tool that system-
atically implements the chain rule of differentiation to
obtain the derivatives of functions calculated by com-
puter programs. In this paper, it is assessed as a tool
for engineering design. The paper discusses the for:
ward and reverse modes of AD, their computing re:..........
quirements as well as approaches to implementing AD.
It continues with application of two different tools to
two medium-size structural analysis problems to gen-
erate sensitivity information typically necessary in an
optimization or design situation. The paper concludes
with the observation that AD is to be preferred to fi-

of a programs input, generates approximate deriva-
tives which can be affected by round-off and trunca-
tion errors (Haftka and Gurdal, 1992 is. While an ex-
act technique, the later tends to generate very cum-
bersome expressions for the derivatives. There are a
number of applications of AD in the literature, although
a surprisingly limited number of them have to do with
engineering design.

This paper describes an effort underway to assess the
applicability of AD in engineering design. It has two
major sections. The first is a brief introduction to AD
based on some of the most recent publications on the
subject. It discusses the two modes of AD, addresses

nite differencing in most cases, as long as sufficient the issue of computer cost, presents different forms
of AD tools and briefly discusses some results. Thecomputer storage is available; in some instances, AD

may be the alternative to consider in lieu of analytical second section reports on applications of two different
AD tools to generate sensitivity information for two

sensitivity analysis, representative structural applications.

Introduction

Automatic Differentiation (AD) is a collection of corn:
puter science techniques which permit one to automati-
cally calculate the derivatives of information generated
by a computer program with respect to any parame-
ter intervening in its calculation. Typically, to calculate
the derivative of the output of a program with respect

Automatic Differentiation, a Brief Introduction

This section gives an introduction to AD. It draws heav-
ily on existing literature, notably the excellent mono-
graph by Rail (1981) 2s and papers by Iri (1984) 2° and
Gdewank (1991a and b)9,1°. Another good source is
the collection of papers presented at a recent sympo-

to its input, one modifies the original program by in- Slumon the subject and which was edited by Griewank
sertion of specialized instructions which identify rele-::: and Corliss (1991) 13.
vant dependent and independent variables. The pro-
gram is then modified automatically by a preprocessor Directed Graph Representation of a Function

which enhances it to calculate derivatives. The en- The basic concepts of AD are illustrated by means of
hanced program is compiled conventionally, linked (if a directed graph representation of the calculations for
necessary) with special run-time libraries and executed a set of functions. The illustrative example selected
to generate not only the original program's dependent- is the traditional symmetric three-bar truss problem
variables but also their derivatives with respect to the_ (Fig. 1). The analysis equations relating dependent
independent variables, variables y's to the independent variables x's are given
AD is essentially an automatic implementation of the in Eq. 1 with y_the stress in bar i, Y4, the weight of the
chain rule of differentiation based on tracking the re- :: truss, and where Xl is the cross-sectional area of the
lationships between dependent and independent vari- oblique members and x2 that of the vertical member.
ables. It produces exact derivatives, limited only by
machine precision. There are two modes of AD. In the.........
first, the forward mode, the chain rule is evaluated from
the input to the output; in this mode, the computational
cost increases with the number of inputs. In the sec-
ond mode, the reverse mode, the computational cost
increases with the number of outputs. In this mode,
the chain rule is evaluated from the output to the input.
While it can be much faster than the forward mode, this
reverse mode can place enormous demands on com-
puter storage and requires special memory handling.
AD is distinct from finite difference or symbolicmanipu-
lation techniques. The former, based on perturbations

y] ',-
2=1z_ + v_z_

20v"2"zz
Y2 =

2=1==+ v_z_
-20z_

Y3=
2zlz_ + V_x_

Y4= 10(2v/2=1 + x2)

(1)

Figure 2 gives a simplified directed graph representa-
tion of the calculations involved in Eq. 1. At the bottom

of the graph appears one vertex for each independent
variable, and, at the top, one for each dependent vari-
able.

Intermediate vertices correspond to intermediate vari-
able values obtained by elementary operations on vari-
ables at lower levels'.

The arcs joining the different vertices represent the
direction of information flow in the graph. To each arc,
one may automatically attach the value of the partial
derivative of the variable at the end of the arc with
respect to the variable at the origin of the arc (Fig. 3).

The directed graph representation clearly identifiesthe
computations involved in a given calculation. There-
fore, it gives a measure of the computational cost as-
sociated with that calculation, sometimes referred to
as computational complexity of the function.

i, 100 in
A

100 in_

.I. 100 in
T t

(3)

b/in 3

20kips/ _IL 20kips

This representation is simplified in the sense that multiplica-
tions by constants are not identified as separate elementary opera-
tions, even though, they are, from a strict computational standpoint.
This assumption is made for the sake of simplifying the discussion.

Figure I Three-bar truss

c = 20x2+q2x. d= a+b

x1

b = ",/2"x_ a = 2XlX2

X2

d

Figure 2 Directed graph representation of Eq. 1

2

Forward and Reverse Modes of Differentiation

The forward mode of differentiation, also called bottom-

up mode, implements the chain rule of differentiation,
- =

starting with the independent variables. At each vertex
is associated the numerical value of the total derivative

of the intermediate variable with respect to the relevant
independent variable. Referring to Fig 3, for example,

to calculate the derivative of Y3 with respect to x2, we
proceed with the following calculations:

da
=2zl

dz2
dd _d da

dx: Oa dz_
dy3 Cqy3 dd 9Y3 (2)

dz= - Od dz2 + Oz"_

20z_ * 1 * 2zz -20

= (2zlz2 + _x_) = + (2z,z2 + _=_)

In this equation, the d(.)/d(.) terms identify total deriva-
tives, the _(.)/_)(.) are partial derivatives. At each ver-

tex, the derivative of the corresponding intermediate
variable is the sum of contributions from each incom-

ing arc involving, for each arc, the total derivative at the

vertex at the origin of the arc times the partial associ-
ated with the arc. The calculation of the derivative val-

ues may proceed along with that of the function values
with the intermediate variable values being calculated

along with the values of their derivatives with respect to
the independent variables. At any time, the interme-
diate variables and their derivative values which are

required in subsequent calculations must be stored.

In contrast, the reverse mode of differentiation, also

known as the top-down or backward mode, implements
the chain rule starting with the dependent variables.
Here, at each vertex is associated the numerical value

of the derivative of the relevant dependent variable with

yl y2 y3 y4

-20
d

c d

d
10

b a

2)(2

Xl X2

Figure 3 Partial derivatives for the arcs of the directed graph of Eq. 1

3

respect to the corresponding intermediate variable. If
the same derivative is sought, then the following cal-
culations result:

dy__.33= 20z2

dd (2=,=5+ vS=)
dy__.33= dy..__3___d= 20x_ * 1

dy3 dy3 _ga _Ya
- +

dx2 da Ox2 c_x2
20x2 * 1 • 2Zl -20

= (2,_1x_ + _,_)_ + (2x1=_ + ,,Sx_)

(3)

Since this calculation traces back from the dependent
variables to the independent variables, It has to oc-
cur after a bottom-up sweep through the computational
graph to obtain the independent variables and the par-
tial derivatives of the arcs. In principle, all the interme-
diate calculations, potentially a vast amount of data,
have to be stored in memory for use in the top-down
sweep.

Cost of Automatic Differentiation

Observation of the directed graph gives a sense of the
cost associated with AD. As pointed out by Iri (1984) 2°,
for example, the cost of calculation of a function is
proportional to the number of vertices of the graph,
while calculating the partial derivatives of that function
adds a cost proportional to the number of arcs in the
graph. In addition, the cost of calculating the partial
derivatives associated with the arcs is negligible, once
the function has been calculated. Therefore, without
distinguishing between forward or reverse mode of
differentiation, we should expect the cost of calculating
a derivative of a function to be of the same order as
that of calculating the function.

Starting with one independent variable, the forward
mode gives the partial derivatives of all dependent vari-
ables, therefore one should expect the cost of calcu-
lating derivatives by the forward mode to be propor-
tional to the number of independent variables. On the
other hand, starting with one dependent variable, the
reverse mode gives its derivatives with respect to all
independent variable; therefore its cost is expected to
increase with the number of dependent variables.

For a single function .f of a vector variable x of n vari-
ables, results from Iri (1984) 2° and Griewank (1991c) 1_
can be combined to give, for the forward mode of dif-
ferentiation,

l + n < L(f , xTf) < 4n
c - L(f) -

(4)

where c is a constant, L(./') is the cost of calculating the
function and L(.f, V f) is that of calculating the function
and its gradient with respect to x. In this case, the cost

of calculating the gradient of a function increases with
the number of design variables. In contrast Iri (1984) 2°
shows that, for the reverse mode,

1 < L(f, V.f) < 6 (5)
- L(f) -

a bound independent of the number of variables.

In engineering applications using nonlinear program-
ming, one is most often concerned with finding the
Jacobian matrix J for a vector of m functions f (de-
pendent variables) with respect to a vector of n inde-
pendent variables x. Iri (1991) 22 gives the following
bounds. For the forward mode:

< L(r, a) < _(.) (6)
- L(f)

while, for the reverse mode:

L(f,a)
1< L(f) g l+3rn (7)

Again, the cost of the forward method is proportional
to the number of independent variables and that of
the reverse method is proportional to the number of
dependent variables.

Griewank and Reese (1991) 14 show that, just as in
application of finite differencing, knowing the sparsity
of the Jacobian in advance can reduce the cost of AD.
In such a case, the upper bounds in Eqs. 6 and 7
reduce respectively to 3fi or 3rh, where fi < n is the
maximum number of non-zero entries in the columns
of J and ¢n < m is the maximum number of non-zero
entries in its rows.

From the standpoint of storage, Griewank (1991b) _°
shows that a straightforward implementation of the for-
ward mode should require on the order of n times the
random access storage and exactly the same sequen-
tial access storage as required for the calculation of
the functions.

On the other hand, a straightforward implementation
of the reverse mode requires on the order of m times
the random access storage of the functions. Since
intermediate results must be stored until the reverse
sweep, the sequential access storage of the reverse
mode is the sum of that required for the functions plus
a term proportional to the total number of mathematical
operations in the calculations of the functions. This
latter term can be significant and totally negate the
computational cost benefit associated with the reverse
mode.

For the reverse mode, there is a direct trade-off be-
tween operation count and sequential access storage
required. Indeed, the storage requirements can be re-
duced by not storing all intermediate information dur-
ing the bottom-up sweep to calculate the functions but
by regenerating it during the top-down sweep for the

4

derivatives. Griewank (1992) _2discusses these trade-
OffS.

It must be noted that the above bounds are only es-
timates, based on very general assumptions on the
problem at hand. Actual performance can be signif-
icantly affected by the exact computational steps re-
quired in the problem considered and by also by the
specific implementation of the AD methodology.

Developments

and then automatically produce a computer program
to calculate functions and derivatives.

It must be noted that some tools are actually hy-
brids, belonging to several of the classes. From the
standpoint of applying AD to engineering optimization,
both extensional and operational tools offer the best
prospect for immediate application since they are likely
to be directly applicable to existing analysis programs.
In contrast, elemental, integral or symbolic tools should
be considered only if a new analysis program is devel-
oped.

Automatic Differentiation Software AD software au-
tomatically transforms a description of the functions of
interest into a computer program calculating the func-
tions and their derivatives. The initial descriptionof the
functions can be either in symbolic or In computer pro-
gram form. Juedes (1991) lg provides a detailed review
of 29 software tools for AD. Of those, only a handful

Automatic Differentiation Applications Even though
AD methodology has been in development for close to
30 years, applications are remarkably few, particularly
in the area of engineering design and optimization. In
the volume edited by Griewank and Corliss (1991) 13
numerous potential areas of application are identified

are commercial programs, most others are research but few results are actually discussed. One notable ex-
programs available from their authors. Some of those ception is the work of Worley (1991)2e reporting on nu-
tools provide both modes of AD; some provide deriva- merous applications of the GRESS (Horwedel, 1991a
tives of higher order. Juedes describes five classes of and b)17,18computer program (see next section) in both
tools, according to how the transformation is effected forward and reverse modes. He systematically reports
between the description of the original functions and on 16 applications taken mostly from the area of con-
the code for their derivatives, taminant transport modelling. The applications cover
Elemental AD tools provide the user with a set of sub- large programs with up to 16000 lines of code. One
routines to perform elementary numerical calculations
and their derivatives. These subroutines use as input
the arguments of the elementary calculation and their
derivatives with respect to the relevant independent
variables and return as output the result of the opera-
tion and its derivatives. The user must then use these
subroutines when developing the code to calculate the
functions.

Extensional AD tools work with original codes writ-
ten in a conventional programing language (eg FOR'
TRAN). These tools typically are preprocessing com-
pilers. They take the original code, and produce an en-
hanced code in the same programing language. The
enhanced code may then be compiled conventionally,
linked with run-time libraries if necessary and exe-
cuted.

Operational AD tools are similar to extensional AD
tools however they apply to original codes written in a
flexible modern programing language (eg C**). They
define new data types for functions of which the deriva-
tives are required and provide for the capability to auto-
matically generate the derivatives of the functions de-
fined in the new data types.

Integral AD tools are typically elements of special-
purpose high-level computer languages that provide
the capability to calculate the derivatives of expres-
sions formulated in those languages.

Symbolic AD tools begin with a symbolic representa-
tion of the functions to be calculated, use algebraic ma-
nipulation to generate the derivatives of the functions

application of the reverse method to shallow-land dis-
posal of radioactive waste included 69000 independent
variables and 2 dependent variables and provided all
necessary derivatives in 10 times the run-time of a sin-
gle analysis. An application of the forward mode to a
radioactive decay model with 7 independent variables
and 140000 dependent variables required 25 times the
run-time of a single analysis.
Bischof et al (1991)4 introduced the program ADIFOR
(see next section) and reported on a large number of
test problems with small to moderate size (less than
1500 lines) computer codes. They show AD gener-
ally faster (up to 70%) than finite difference; in one
example they show AD actually faster than analytically
developed derivatives.

Other applications include the work of Garcia (1991)6
who uses AD to fit complex models of growth in forest
plantations and shows reductions in derivative com-
puting times by factors of 4 to 6 when compared to a
central difference procedure for problems with one de-
pendent variable and up to 18 independent variables.
Iri (1988) 21demonstrates the use of AD-derived Jaco-
bians in the solution of nonlinear equations modelling
a distillation tower. In a problem with 108 independent
and dependent variables, Iri demonstrates calculation
of derivatives 6 to 7 times faster than by forward dif-
ferencing.

An area for application of the reverse method is for
models described by large numerical systems where
there are typically many more inputs than outputs;

5

primeexamples of such systems are large meteoro-
logical or oceanographic models. It can be shown that
the sensitivity information required to solve typical in-
verse design problems (parameter estimation, data fit-
ting or data assimilation) for such models may be found
from integration of an adjoint numerical system. It turns
out that the adjoint is equivalent to the reverse mode
of differentiation. Since a large amount of time goes
into developing such models, the developing of auto-
matic methods to code the adjoint systems can be very
beneficial. Tallagrand (1991)23 discusses that applica-
tion in the context of meteorological modelling, Thacker
(1991)24from the perspective of the oceanographer.

Two Structural Applications

This section discusses two exploratory applications of
AD to generate sensitivity information commonly used
in structural optimization. The first uses the GRESS
code developed by Horwedel (1991a and b)17,1eat
Oak Ridge National Laboratory to calculate derivatives
of weight, displacements and stresses in trusses ana-
lyzed with a small finite element analysis program. The
second uses the ADIFOR code developed by Bischof
et al (1991) 4 at Argonne National Laboratory to find
derivatives of stresses in a plate model of a super-
sonic transport wing.

GRESS Applied to Finite Element
Analysis with STAP

GRESS is a hybrid AD tool which has characteristics
of both extensional and symbolic tools. GRESS offers
the two modes of AD. The CHAIN option implements
the forward mode and produces derivatives of inter-
mediate variables with respect to selected indepen-
dent variables, as they are calculated. The ADGEN
option implements the reverse mode. As the analy-
sis is performed, the ADGEN option generates partial
derivatives for all assignment statements in the model
and stores those. Then that information is read back
and processed to generate the derivative of selected
dependent variables with respect to all independent
variable. This storage of intermediate information is
in-core for a small enough problem but can be moved
out-of-core for larger problems. For the ADGEN op-
tion, GRESS uses several techniques to reduce the
amount of intermediate information retained, includ-
ing retaining only derivative information depending on
selected independent variables and affecting selected
dependent variables

Given a FORTRAN program performing an analysis,
the user must augment it with statements identifying
dependent and independent variables as well as the
AD mode required. GRESS precompiles this modified
code to produce another FORTRAN code enhanced
with derivative taking capabilities. The enhanced code

is then compiled and linked with run-time libraries.
GRESS is available for both VAX/VMS and UNIX com-
puters; the results given here were obtained with the
UNIX operating system. GRESS accepts most ANSI
standard FORTRAN 77 statements but disallows func-
tions that may be discontinuous and complex func-
tions; it does not allow the use of scratch files during
execution (Horwedel 1991a) 17.

Table 1 shows timing results obtained using GRESS
to obtain the derivatives of volume, stresses and dis-
placements in trusses analyzed with the simple finite
element program STAP (Bathe and Wilson, 1976)3.
The results were validated by comparing them with fi-
nite difference derivatives; for the smallest example,
analytical results were available as well and compared
exactly with the GRESS-generated results. The table
shows that, except for the largest problem, both the
forward mode and the reverse mode with in-core stor-
age of intermediate results are noticeably faster than
the finite difference alternative, with the reverse mode
being fastest. The reverse mode with out-of-core stor-
age of intermediate results requires considerably more
time than the other two approaches due to its high I/O
requirements. However, for the largest problem, it is
the only AD alternative and it requires much more time
even than the finite difference alternative.

ADIFOR Applied to Equivalent Plate
Analysis with ELAPS

ADIFOR is a recent development. It is an extensional
tool that implements a hybrid combination of the for-
ward and reverse modes of AD. The program oper-
ates primarily in the forward mode, but implements
the reverse mode for each complex assignment state-
ment. Since it is based primarily on the forward mode
of AD, ADIFOR's cost increases with the number of
independent variables in the problem treated. How-
ever, it is capable of exploiting known sparsity of the
Jacobian matrix so that the cost increases only propor-
tional to the maximum number of structurally orthogo-
hal# columns of the Jacobian.

Recognizing that the development of derivative code
Is an application of program translation, ADIFOR is
based on tools from the ParaScope programming en-
vironment (Callahan et al, 1988)5 which was devel-
oped for automatic parallelization of FORTRAN pro-
grams. Although operating ADIFOR is somewhat sim-
ilar to operating GRESS, ADIFOR does not require any
run-time library.

Table 2 lists timing results for structural analysis and
sensitivity analysis in a plate model of a Mach 2.4 su-
personic transport wing. The details of the model and
analysis are given by Barthelemy et al (1992) 2. This

columnJmandJnoftheJacobianare structurallyorthogonal
if J_n*Jlm=O,for alli,

6

Table I Timing for generation of derivatives of volume, stress and displacements In
trusses with respect to member cross-sectional areas (SPARCstation I+, 16Mb CPU)

Number of bars, nb

Number of nodes, nn

Number of load cases, n_

Reference

3

4

Haug & Arora
(1979)

25

10
,,..,

Haug & Arora
(1979)

52

20

Barthelemy &
Riley (t 988)

200

77

3

Haug & Arora
(1979)

Independent variables, n 3 25 52 200

Dependent variables, ma 31 111 113 1294

Function calculation time, secs (STAP) .2 .3 .4 2.3

Derivative calculation time, secs:

Finite differences .4 8.6 28 592

Forward mode, in-core .2 3.3 7.0

Reverse mode, in-core .5 .6 .8

Reverse mode, out-of-core 1. 41 56 7259

a m=l+nl'(3*nn+nb)

analysis is based on Giles' (1986, 1989)7.8 program special purpose finite difference code was written for
ELAPS which uses a Rayleigh-Ritz approach to aria- this example but the results show a reduction of 40%
lyze wing structures. The problem independent vari- to 60% of time with respect to a simple-minded imple-
ables are skin thicknesses and spar and rib cap cross- mentation of the differencing process amounting to re-
sectional areas; the dependent variables are maximum running the basic analysis program, once for the base-
strains and stresses in the wing covers in five different line analysis and once for each independent variable.
load cases. A preprocessor program transformsthe 44
input skin thicknesses and cap areas into 136 ELAPS
inputs; ELAPS is by far the longest running of the two
codes. Applying AD to the preprocessor and to ELAPS
separately and then using the chain rule to calculate
the derivatives of the output of ELAPS with respect to
the inputs of the preprocessor would yield a cost driven
by the number of inputs to ELAPS, that is136. Instead,
the preprocessor and ELAPS are merged into one pro-
gram and the cost of applying AD is now driven by the
number of inputs to the preprocessor which is 44.

Table 2 show results selecting only 4 of the indepen-
dent variables of the problem or all 44 or them. No

Table 2 Timing for generation of derivatives of strains
and stresses in a plate mode/of a wing with respect to
skin thicknesses and rib and spar cap cross-sectional

areas (SPARCstation IPX, 16 MbCPU)

Independent variables 4

Dependent variables 16500
iF

Analysis time, sece 46

Derivative time, secs 141

Finite differences (est.), secs 230

44

1650O

,°771

2070

Here the derivatives were validated by comparisonwith
hand-calculated finite difference results.

Dlscusslon

The results discussed in this paper as well as others
reported on in the literature establish clearly that AD
generates accurate derivatives, generally faster than
the finite difference alternative. Speed-up factors of
up to one order of magnitude have been reported
with existing AD tools, speed-up factors of 2 are not
unusual. While some of the examples reported on are
quite large, most are of moderate size, with the original
non-modified code seldom larger than 3000 lines of
codes. While the estimates discussed in the paper and
other available in the literature indicate useful trends in
computational cost and storage requirements, they are
not sharp enough to decide unequivocally when AD is
cheaper than finite differencing.

In general, AD is simpler to implement than analytical
sensitivity analysis. However, it is unlikely that pure
systematic (even clever) application of the chain rule
of differentiation will prove in general faster than an-
alytical sensitivity analysis. Indeed, when calculating
derivatives analytically, all possible simplifications can
be effected prior to doing any coding and very com-

7

pactformulationscanbederived.A simpleexample
is thatof a functionfoundasthesolutionof a single
nonlinearequation (for example y = sin(xy)) and ob-
tained by some sort of iterative process. AD will gen-
erate an iterative process for the derivative that mir-
ror exactly that for the calculation of the function. It
turns out, however, that the derivative can be found
analytically, without iteration, from a linear sensitivity
equation. Convergence of the iterative process for the
derivative may require more or less iteration than that
for the function and the AD procedure used must insure
convergence of that process. In addition, the iterative
calculation for the derivative will be significantly more
costly than the analytical solution. In general, AD will
not be able to overcome such difficulty, unless some
symbolic manipulation capability is added. There are
counterexamples however where AD proves faster that
analytical sensitivity analysis, as reported by Bischof
et al (1991)4.

From these observations, and provided that the source
code is available for the analysis program, AD is rec-
ommended over finite differencing for moderately sized
computer programs. For larger programs, application
of AD may r1"otbe possible or its performance may
be degraded as it requires at least a small multiple of
the storage necessary for the original program. AD
remains the alternative of choice to analytical sensitiv-
ity analysis as long as execution time can be traded
for coding and debugging time. This is especially true
when prototyping a computer system or conducting a
brief study. When adding subroutines to a computer
program which already performs sensitivity analysis
analytically or otherwise, the derivatives of the added
subroutines can be obtained by means of AD and in-
serted in the original code.

Applying AD to any analysis problem definitely requires
some development time. First, the original program
must be written in standard ANSI FORTRAN. The us-
age of capabilities offered by extensions to ANSI FOR-
TRAN may or may not be permitted. Also, the original
program must be modified to meet the constraints of
the specific AD tool used. For example, the tools con-
sidered in this paper do not permit usage of scratch
files (although this is not a general restriction of AD). If
those are used in the original program, the user must
somehow address that problem. If one writes a new
analysis program to be enhanced later by means of
AD, one must keep those restrictions in mind.

This paper has focused only on the subset of AD
techniques dealing with first order sensitivity analysis.
Many extensions exist which have significant poten-
tial for engineering design. These include the use of
higher-order derivatives and the generation of Taylor
series coefficients, for example, to generate high-order
approximations to functions and also to make use of
second order optimization algorithms. Also, only one

of the types of AD tools has been explored and oth-
ers could certainly prove useful as well. For example,
integral AD tools are attractive in that they recast en-
gineering analysis programs in terms of higher level
functions. In turn, those tools offer corresponding AD
capabilities which may be worth exploring.

Acknowledgments

The authors are grateful to J. Horwedel of Oak Ridge
National Laboratory who assisted them in the installa-
tion and use of GRESS. C. Bischof, G. Corliss, and
A. Griewank at Argonne National Laboratory made the
ADIFOR program available and are thanked for their
untiring support.

References

1. Barthelemy, J.-F.M., and Riley, M.F., (1988), "Im-
proved Multilevel Optimization Approach for the
Design of Complex Engineering Systems," AIAA
J., Vol. 26, No. 3, Mar., pp. 353-360.

2. Barthelemy, J.-F.M., Wrenn, G.A., Dovi, A.R., and
Coen, P.G. (1992), "Integrating Aerodynamics and
Structures in the Minimum Weight Design of a Su-
personic Transport Wing," AIAA Paper 92-2372,
Presented at 33rd AIAA/ASME/AHS/ASC Struc-
tures, Structural Dynamics and Materials Confer-
ence," Apr. 13-15, Dallas, TX,

3. Bathe, K.-J., and Wilson, E.L. (1976), Numerical
Methods in Finite Element Analysis, Prentice Hall.

4. Bischof, C., Carle, A., Corliss, G., Griewank, A.,
and Hovland, P., (1991), ADIFOR--Generating
Derivative Codes for Fortran Programs, Argonne
Preprint, MCS-P263-0991.

5. Callahan, D., Cooper, K., Hood, R.T., Kennedy,
K., and Torcson, L.M., (1988) "ParaScope: A Par-
allel Programming Environment," Int.J. Supercom-
puter Applications," Vol. 2, No., 4, Dec.

6. Garcia, O., (1991), "A System for the Differenti-
ation of FORTRAN Codes and an Application to
Parameter Estimation in Forest Growth Models,"
in Griewank and Corliss (1991), pp. 273-285.

7. Giles, G.L., (1986) "Equivalent Plate Analysis of
Aircraft Wing Box Structures with General Plan-
form Geometry," J. Aircraft, Vol, 23, No. 11, Nov.,
pp: 859-864.

8. Giles, G.L., (1989) "Further Generalization of an
Equivalent Plate Representation for Aircraft Struc-
tural Analysis," J. Aircraft, Vol. 26, No. 1, Jan. ,
pp. 67-74.

9. Griewank, A. (1991a), "The Chain Rule Revisited
in Scientific Computing," SlAM News, May, pp.
20.

10. Griewank, A. (1991b), "The Chain Rule Revisited 19.
in Scientific Computing, Part I1" SlAM News, Jul.,
pp. 8.

11. Griewank, A. (1991c), "Automatic Evaluation of 20.
First and Higher Derivative Vectors," in Proc. of
1990 Wurzburg Conference on Bifurcation and
Chaos: Analysis, Algorithms, Applications, Seidel,
Schneider, Dupper and Troger, Eds, Birkauser, 21.
Basel, pp. 124-137

12. Griewank, A. (1992), "Achieving Logarithmic
Growth of Temporal and Spatial Complexity in
Reverse Automatic Differentiation," Optimization
Methods and Software, Vol 1, pp. 35-54. 22.

13. Griewank, A., and Corliss, G.F., Eds., (1991)
Automatic Differentiation of Algorithms: Theory,
Implementation, and Application, SLAM, Philadel-
phia. 23.

14. Griewank, A., and Reese, S. (1991), "On the Cal-
culation of Jacobian Matrices by the Markowitz
Rule," in Griewank and Corliss (1991), pp.
126-135. 24.

15. Haftka, R.T., and Gurdal, Z., (1992) Elements of
Structural Optimization, 3rd Ed., Kluwer Academic
Publishers Group, the Netherlands. 25.

16. Haug. E.J., and Arora, J.S., (1979), Appfied Opti-
mal Design, J. Wiley and Son.

17. Horwedel, J.E., (1991a), GRESS Version 2.0
User's Manual, Report ORNL/TM-11951, Nov. 26.

18. Horwedel, J.E., (1991b), "GRESS, A Preproces-
sor for Sensitivity Analysis of FORTRAN pro-
grams," in Griewank and Corliss (1991), ppl
243-250.

Juedes, D.W., (1991) =ATaxonomy of Automatic
Differentiation Tools," in Griewank and Corliss
(1991), pp. 315-329.
Iri, M. (1984), =Simultaneous Computation of
Functions, Partial Derivatives and Estimates of
Rounding Errors -- Complexity and Practicality
m,- Japan J. Appl. Math., Vol. 1, pp. 223-252.
Iri, M. (1988), "Automatic Computation of Partial
Derivatives and Rounding Error Estimates with
Applications to Large-Scale Systems of Nonlinear
Equations," J. Comp Appl. Math., Vol 24, pp.
365-392.

Iri, M., (1991), "History of Automatic Differentiation
and Rounding Error Estimation", in Griewank and
Corliss (1991), pp. 3-16.

Talagrand, O., (1991), "The Use of Adjoint Equa-
tions in Numerical Modeling of the Atmospheric
Circulation," in Griewank and Corliss, (1991), pp.
169-180.

Thacker, W.M., (1991), =Automatic Differentia-
tion form an Oceanographer's Perspective," in
Griewank and Corliss (1991), pp. 191-201.
Rail, L.B., (1981), Automatic Differentiation: Tech-
niques and Applications, Lecture Notes in Com-
puter Science No. 120, Springer Verlag, New
York.

Worley, B.A. (1991), "Experience with the Forward
and Reverse Mode of GRESS in Contaminant
Transport Modeling and Other Applications," in
Griewank and Corliss (1991), pp. 307-314.

9

I Form ApprovedREPORT DOCUMENTATION PAGE oMB,_o ozo.-o,ao

D._._S fi,_ _,_a{, S_O _2,]4 ;._hnjtcn, '_.':_ 22232._3C7 _r,_ _-, the C'f_ce ,L,: %',a,_a:e_en ", an_ B,,_t_ P_oer_r_ Redc_iOn Prc!ect (0704-0_B_) _,'asn n_lon i,C 20503

_" AGENCY USE ONLY {LeavE biar_kJ i 2" REPORT DATEAugust1992 j
4. TITLE AND SUBT!TLE

Automatic Differentiation as a Tool in Engineering

Design

6.AUTHOR{S}

Jean-Francois Barthelemy
Laura E. Hall

7. PERFORMING ORGANIZATION NAME(S} AND ADDRESS(ES)

NASA Langley Research Center

Hampton, VA 23665-5225

9.SPOnSORING/MONITORING AGEKCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Washington, DC 20546-0001

3. REPORT TYPE AND DATES COVERED

Technical Memorandum

5, FUNDING NUMBERS

l_ 505-63-50-06

B. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING _MONITORING
AGENCY REPORT NUMBER

NASA TM-107661

11.SUPPLEMENTARY NOTES Presented at Fourth AIAA/Air Force/NASA/OAI Symposium on

Multidisciplinary Analysis and Optimization, September 21-23, 1992 in Cleveland,

Ohio. Laura Hall-Unisys Corporation, Inc., Hampton, VA

_e_n-FrancQi_is B_rJ_h_l_myc/_anzlev_Res_=enter: _i_mp_nn_ VA.,
'12a. DISTRIBUTION "AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified -Unlimited

Subject Category 61

13. ABSTRACT(Maximum200wor_) Automatic Differentiation (AD) is a tool that systematically

implements the chain rule of differentiation to obtain the derivatives of functions

calculated by computer programs. In this paper, it is assessed as a tool for

engineering design. The paper discusses the forward and reverse modes of AD, their

computing requirements as well as approaches to implementing AD. It continues

with application of two different tools to two medium-size structural analysis

problems to generate sensitivity information typically necessary in an optimization

or design situation. The paper concludes with the observation that AD is to be

preferred to finite differencing in most cases, as long as sufficient computer

storage is available; in some instances, AD may be the alternative to consider in

lieu of analytical sensitivity analysis.

14. SUBJECT TERMS

Sensitivity Analysis, Automatic Differentiation

Structural Optimization

17. SECURITY CLASSIFICATION _ 19.
OF REPORT

Unclassified

NSN 7540-0 _-2B0-5500

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

16. PRICE CODE

A02
20. LIMITATION OF ABSTRACT :

_..J
Standard Form 298 (Rev 2-89)
Prescr,b_d b_ -'r_S Std 7]9 ?8

